
The relative motion of an active interceptor space vehicle in its approach to a passive 

INVESTIGATIONOFTHEMOTIONOFA SPACBVEHICUBYTHE 

METHODS OF SIMILARIW THEORY 

PMM Vol. 35, N5, 1971, pp. 930-932 
E.E. IVANOVA 

(Moscow) 
(Received January 1. 1971) 

For the generalization of numerical results in the investigation of the motion of 
space vehicles in a central gravitational field, a change tc the dimensionless 
form of the differential equations is effected by the introduction of similarity 
coefficients for the basic parameters of the motion, With the use of similarity 
coefficients the solution of the problem is readily evaluated for arbitrary geom- 
etric dimensions of the orbit and characteristics of the gravity field for fixed 
values of the eccentricity The introduction of similarity coefficients is valid 
for the consideration of either relative or absolute motion of a space vehicle. 

target vehicle is described by a system of nonlinear differential equations with variable 
coefficients. 

Analytic investigation of this system is impossible in the general case, so that it is 
necessary to use numerical methods. The solution depends 
on the shape of the orbit of the target (the eccentricity 
4, its linear dimensions (the focal parameter P), the 
characteristics of the gravitational field (the gravitation- 
al constant ~1 and the initial conditions (the relative 
coordinates and velocity of the interceptor at the initial 
instant of the maneuver). 

Fig. 1. 

The longitudinal relative motion of the interceptor A 
in a system of coordinates connected with the target 
0, for a central gravitational field (Fig. 1) is expressed 

by the system Cl] 
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Here r is the distance from the target to the gravitational center, 21 and zs are the 
relative coordinates of the interceptor, zz and x4 are the components of the relative 
velocity of the interceptor, t is the time, and 6 is the true anomaly of the target 
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reckoned from the perkenter. The sectoral speed of the target 0 is constant, so that 
the true anomaly changes rapidly near the pericenter and slowly in the vicinity of the 
apocenter. As a result the variable coefficients of system (1). depending on the time 
t, change nonuniformly. If the true anomaly 6 is taken as the argument in the system 

(1). the variable coefficfents of the aquations will change more uniformly, which for 
a given accuracy of the solution permfts the integration steps to be increased and the 
machine time to be reduced. 

The change to the new argument can be carried out with the aid of the relation 

dt/dib = K,/V (K, = vpjq x=l+ecos6) (2) 

Then the system (1) takes the form dzl 
K, 

df)=T=a 

(3) 

In a series of works, for example &, 33, transformation to dimensionless qunafities 
is pppo#d for the simp&fieatiW of the equations of relative motion However, the use 
as unit of length of the distance ftom the target 0 to the gravitational center P;a], which 
changes in the course of the motien. or of the mean anomaly as the argument fs], does 
not parrnit gmerdisvcion of the seWion of a proMem of the approach 0s space vabicles. 

Iftheunlraofftagthandspeedatetalcenas 

Kl -P, K,= viz (4) 

respectively, then the system (3) in dimensiobss form becomes 

Here XI and XS are the dfmensionless relative coordinates of the interceptor, and X2 

and X4 are the components of its dfmensionless relarlve velocity. 

The system (5) is similar to the system (3). where the similarity coefficients [4] for 
the relative coordinates and velocity are determined by the expressions (4). and the 
values of the argument 6 are e@al at corresponding pofnts of similar orbits (with an 
identiul eCCCiWCity 8) . The determining parameters for the system (3) BIG Ps Pl ef 

t), =10* lie* zte, %o, and fix the syrtcm (5) they are c, t), X1,, Xpo, Xao, XCO (where the 

suoscript 0 - “zero” - indicates the initial conditions). 
The right-hand sides of the system of GquGtiot'u (5) contain only one p~wm~tcr. tiXG 



Investigation of the motion of a space vehicle 885 

eccentricity c that determines the form of the orbit of the targef If a numerical sol- 
ution of the problem is known in dimensional form, it can be reinterpreted for the orbit 
of a target with the same eccentricity but different geometrical dimensions and charac- 
teristics of the gravitational field through the ratios of the similarity Coefficients: 

It can be shown that the similarity coefficient for acceleration is 

- K (7) 

x R 

, ‘\ ,/-: 

lFii!T 

w=~lPp) 

The transformation in given solutions of the systems 
(3) and (5) from the true anomaly to time is effected 

P by known methods [S. SJ, The similarity coefficient 

u Ki for time, the value of which was given early in 
0 the expression (2), can be obtained, for example, 

9 
from the ratio of the periods of rotation of the target 

Fig, 2. 
through its orbit in the dimensional and dimension- 
less forms. 

The similarity coefficients obtained for relative motion of a space vehicle in the 
approach problem prove to be applicable also to the consideration of motion in an ab- 
solute (planetocentric) system of coordinates (0 being the gravitational center and A 
the space vehicle). In fact, the absolute coordinates (Fig. 2) 

case sine 
x=p 1+ecos6 * y=p 1 +ecos6 

and the components of the velocity of the vehicle 

vX= I/5(1 +ecos*), vy = )/lrlpsin6 (9) 

can, with the use of the similarity coefficients (4). be expressed in the dimensionless 
form 

X 
cos 6 sin8 

= i+ecos6 ' '= 1+ecos6 

V’,=1+ecosft, Vv=esin6 (ii) 

The indicated similarity coefficients permit dimensionless equations of motion to 
be obtained for a space vehicle in an absolute coordinate system. The solution of these 
equations for an orbit with fixed eccentricity is general in the sense that with the use 
of the similarity coefficients it is extended to orbits with arbitrary geometric dimensions 
and values of the gravitational constants. 
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Sufficient conditions are obtained for dissipative behavior of the following equation 

2” + f (z’, 2) + g (2) = e (t) (1) 

This equation is called dissipative [ 11 if for any of its solutions the functions z (t) and 
z’ (t) are uniformly finally bounded for t -. 00, The conditions found here differ from 

those already known (1. 21 because in the conditions nere the functions f and g can 
be bounded and arbitrarily small in comparison to the force term c (t). Namely, the 
folIowing theorem is valid. 

Theorem. Let the following conditions be satisfied. 
1) Piecewise continuous functions f (2, 4, R (z) and e (t) are defined for all values 

ofz,zE(-oo,OO)and tEI6,w). These functions ensure the existence of a solution 
of equation (1) in any point of the phase plane zz’ for any t > 0. 

2) e (4 = el (4 + e, (t), let (t) I Q 60 < ~6 

Ez (t) = s ez (t) dt, IEz(t)(dEao<- 
0 

3) Nondecreasing pieuwise continuous functions 0 and 9 exist such that 

cp (2) Q f (2, 2) i 9 (z), 29 2 E (- 00, w). 2 cp (2) > 0, * (2) 2 0 
cl0 < SUP cp (4, -El0 > hf 9 (4 

4) =g (2) > 0 
lim g(x) -elO>-f$((-a&0-O)>O, Eiig (2) + elo < -*G&0+ 0) =GO - 
z-0 x-r-a, 

5) I g (4 I < go < 00 
Then equation (1) is dissipative. 
Proof 1. Instead of Eq. (1) let us examine the equivalent system . 

f = y + EP (t), y’ = -f (g + E, Cd, 4 - g (4 + el U) (2) 

Let 
dv I - f (v -!- Es, 4 - 8 (4 + el (t) 
dz (2) = y+Ez 

In the II plane let us investigate the Curves 

r (H, a)=={@, y) : QY13_ G (2)+ Qt = H = const), C(z) -1, (2) dr 
0 


